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1 Introduction

A bank which wishes to decide whether a credit applicant will obtain a credit or not has
to assess if the applicant will be able to redeem the credit. Among other criteria, the bank
needs an estimate of the probability that the applicant will default prior to the maturity
of the credit. At this step, a rating of the applicant is a valuable decision support. The
idea of a rating system is to identify criteria which separate the ”good” from the ”bad”
creditors, such as equity and liquidity ratios or factors concerning the capital structure of
a firm. In a more formal sense a rating corresponds to a guess of the default probability
of the credit. Obviously, the question arises how a bank can identify a sufficient number
of selective criteria and, especially, what selectivity and discriminatory power means in this
context. A particular problem of credit scoring is that defaults and non-defaults are only
observed for a subsample of applicants. In the following sections we try to make a first step
to a rigorous treatment of this subject which is rarely addressed in literature.

Apart from the theoretical attractiveness this issue is of highly practical importance. This is
due to the fact that the Basel Committee on Banking Supervision is working on a New Cap-
ital Accord (Basel II) where default risk adjusted capital requirements shall be established.
In this context ratings and the design of ratings play an important role. Clearly, the com-
mittee wants the banks to identify factors which ”have an ability to differentiate risk [and]
have predictive and discriminatory power” (Banking Committee on Banking Supervision;
2001, p. 50).

Consequently, banks are forced to assess the quality of their rating systems and to optimize
them with respect to the above-mentioned requirements. The available data base for this
task typically contains only the accepted credit applicants (the debitors of the bank). Data
entries for the rejected credit applicants do often not exist. This leads to a non-representative
data base which gives biased estimates of all relevant parameters if this censoring is not
appropriately handled. To evaluate a new rating system, e.g. by comparing it with the
existing rating system, we would actually need the full data base of all past credit applicants.
One possibility would be to introduce a model which allows us to extrapolate on the data
for the rejected applicants (Greene; 1998; Feelders; 2000). For instance, Ash and Meester
(2002) and Crook and Banasik (2004) report that such bias corrections typically have a
smaller effect than necessary.

Therefore, we use an approach which avoids any specification of a model for the rejected
applicants. We perform a worst case analysis to derive lower and upper bounds for criteria
used to evaluate rating systems. More precisely, we consider measures for the discriminatory
power of a rating system and especially its corresponding credit scores (numerical values that
reflect ratings of the credit applicants). We introduce a criterion that is based on the dis-
crepancy between the score distributions of defaulted and non-defaulted credit applicants.
As another criterion of interest we study the accuracy ratio (computed from Gini coeffi-
cients, see for example Keenan and Sobehart; 1999) which compares the score distribution
of defaulted applicants with that of all credit applicants.

In a different context, Horowitz and Manski (1998) consider a similar censoring problem,
namely survey nonresponse. They derive bounds for the regression function, which in our
case would correspond to default probabilities (PDs). In contrast to their analysis, our focus
lies on performance measures for credit scores. For these measures we can exploit the fact
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that the probabilities of default and non-default cannot vary independently.

To summarize, the main contributions of the paper are the following:

• We discuss how to evaluate the discriminatory power of credit scores given that only
a part of the defaults and non-defaults is observed.

• It is strongly emphasized that censoring leads to biased estimates for any kind of
performance measure for rating systems.

• We derive lower and upper bounds for criteria that are based on the difference of the
score distributions under default and non-default.

The paper is organized as follows: In Section 2 we discuss how to define the discriminatory
power of a credit score. We introduce two criteria that are simple to illustrate and measure
the difference between the score distributions of defaulted and non-defaulted loans. Section 3
discusses the consequences of censoring. In our context, censoring means that we assume to
have default or non-default information only for a restricted set of applicants. In Section 4
we show how to find lower and upper bounds for the proposed criteria under very weak
assumptions. Section 5 illustrates the obtained bounds by a real data example. Finally,
Section 6 summarizes our results.

2 Discriminatory Power of a Score

To assess the default risk of an credit applicant a bank usually identifies several indicators
X1, . . . , Xp such as debt equity ratio or return on investments which are then aggregated to
a single value, the rating of the credit applicant. We will call the mechanism that is used to
aggregate the factors score function. Formally, the score function S is a real valued function
which maps the indicator variables X1, . . . , Xp into the single value S(X1, . . . , Xp). For the
sake of brevity we will denote the random variable S(X1, . . . , Xp) by S.

To formalize the default event for debitor i, we introduce the random variable Y (i) that can
take on only the two values 1 (default) and 0 (non-default). The corresponding score S(i)

aims to reflect the risk of this default event. In the following we will study the relation
between S(i) and Y (i) for a credit portfolio consisting of i = 1, . . . , n debitors. In practice, a
bank typically calculates the score values S(i) at time t and observes the default events Y (i)

at some future time point (for example t + 1). For the redesign of a rating system the bank
is able to check if its historical ratings (produced by the score function) have led to reliable
predictions of the default events.

An important criterion to assess the quality of the score function is its discriminatory power,
i.e. its ability to separate the good from the bad applicants. More precisely, the bank can use
its ex-post observation of the defaults to split the sample of all debitors into two subsamples:
the non-defaulted and the defaulted debitors. If we denote the score cumulative distribution
functions of these two samples by F0 and F1, discriminatory power then means that the
locations of the probability masses of these distributions are as different as possible.

From now on and without loss of generality high score values stand for high default risk and
low score values stand for low default risk. It is important to note that comparing ratings with
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respect to their discriminatory power is only meaningful if these ratings imply a reasonable
ordering of the debitors. In this context reasonable means that the default probability of
a good rated debitor is lower than for bad rated debitor. Formally this property means
that F1 stochastically dominates F0. For this reason we can exclude all those ratings which
do not satisfy this minimal requirement. Obviously no practitioner would take ratings into
consideration that do not exhibit this form of stochastic dominance.

From a formal point of view we need to define how the distance between F0 and F1 should
be measured. We will consider the following two approaches:

• the maximum distance measured by

T = max
s
{F0(s)− F1(s)},

• the average distance measured by the area under curve of the receiver operating char-
acteristic (ROC) curve

AUC = 1−
∫

F1(s) dF0(s)

which will shown to be equivalent to the accuracy ratio AR derived from the Lorenz
curve.

In the remaining part of this section we will describe some properties of these measures.
Instead of analyzing T one can also consider R = 1− T which is given by

R = min
s
{F1(s) + 1− F0(s)} . (1)

If F0 and F1 have densities f0 and f1 possessing only one point of intersection, then R has
the intuitive interpretation as the overlapping region of these densities. This is illustrated in
Figure 1. It is obvious that for distributions F0, F1 on completely different supports (perfect
separation), the value of T is 1. If both distributions are identical (no separation) then T
equals 0. In all other cases T will take on values between 0 and 1.

In practice we have observations S(i) for the scores and Y (i) for the default events. Esti-
mates of the cumulative distribution functions F0, F1 can be easily found by the empirical
distribution functions

F̂j(s) =

∑
i I(S(i) ≤ s, Y (i) = j)∑

i I(Y (i) = j)
, j = 0, 1 , (2)

where I(•) denotes the indicator function. We wish to remark that

T̂ = 1− R̂ = max
s

{
F̂0(s)− F̂1(s)

}
also serves as the test statistic in the Kolmogorov-Smirnov test which checks the hypothesis
of stochastic dominance of F1 over F0. Applying a Kolmogorov-Smirnov test, this minimal
requirement can also be tested formally. However, our goal is to identify a score function
leading to a maximal possible value of T̂ .

The second measure for the discriminatory power introduced above is the the area under
the ROC curve (Hand and Henley; 1997; Engelmann et al.; 2003; Sobehart and Keenan;
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Overlapping of Densities

-4 -2 0 2 4

s

0
0.

1
0.

2 0 1f f

0.
3

0.
4

f0
, f

1

Figure 1: Overlapping area R

2001). The ROC curve is obtained by plotting cumulated percentages of the non-defaulted
and defaulted debitors on the horizontal and vertical scales, respectively. If we sort the
percentages of applicants from “bad” to “good” scores, this means to graph

1− F0(s) vs. 1− F1(s) for all s ∈ (+∞,−∞).

Figure 2 shows how the area under curve (AUC) is then calculated:

AUC =

∫ −∞

+∞
{1− F1(s)} d {1− F0(s)} = 1−

∫ +∞

−∞
F1(s) dF0(s).

An optimal score would exactly separate defaults and non-defaults. The corresponding
optimal ROC leads to an area under curve that fills the complete unit square so that AUC
equals 1 in this case. The worst score is the one which does not contain any information
about defaults and non-defaults, i.e. it randomly assigns score values to credit applicants.
The corresponding ROC curve is thus identical to the diagonal and its AUC equals 1

2
.

The AUC is directly related to the accuracy ratio AR which is based on the Lorenz curve
and its Gini coefficient (Keenan and Sobehart; 1999; Engelmann et al.; 2003). In contrast
to the ROC curve the Lorenz curve plots

1− F (s) vs. 1− F1(s) for all s ∈ (+∞,−∞)

where F denotes the cumulative distribution function of S, the score values of all debitors.
Figure 3 shows the principle of the Lorenz curve. The Lorenz curve is also known as the
power curve or the cumulative accuracy profile (CAP).

The optimal Lorenz curve (for a score that exactly separate defaults and non-defaults)
reaches the vertical axis 100% at a horizontal percentage of P (Y = 1), the probability

4



Percentage

100%

100%

of defaults

Percentage of non−defaults
1−F (s)

1−F (s)1

0

ROC curve

(area under curve)

AUC

Figure 2: ROC curve for credit scores

PD

1−F(s)

optimal curve

Percentage

100%

100%

1−F (s)1

Lorenz curve

2
1_ G

Percentage of applicants

of defaults

Figure 3: Lorenz curve for credit scores

5



of default. The worst Lorenz curve is identical to the diagonal since F1 = F in that case. A
quantitative measure for the performance of a score is then based on the area between the
Lorenz curve and the diagonal. The Gini coefficient G equals twice this area, i.e.

G = 2

∫ −∞

+∞
(1− F1)(s) d(1− F )(s)− 1 = 1− 2

∫ +∞

−∞
F1(s) dF (s) . (3)

To compare different scores, their accuracy ratios AR are defined by relating the Gini coef-
ficient of each score to the Gini coefficient of the optimal Lorenz curve. The accuracy ratio
is defined by

AR =
G

Gopt

=
G

P (Y = 0)
.

The AR is a positive linear transformation of AUC which can be shown as follows: By the
Bayes theorem we have

F = P (Y = 0) F0 + P (Y = 1) F1.

This provides

G = 1− 2

∫
F1 dF = 1− 2

∫
F1 d {P (Y = 0)F0 + P (Y = 1)F1}

= 1− 2 P (Y = 0)

∫
F1 dF0 − 2 P (Y = 1)

∫
F1 dF1 = P (Y = 0) (2 AUC − 1),

where the relations
∫

F1 dF0 = 1 − AUC, P (Y = 1) = 1 − P (Y = 0) and
∫

F1 dF1 = 1
2

are
used. We therefore obtain

AR =
G

P (Y = 0)
= 2 AUC − 1.

In practice the integrals in AUC and AR are estimated by numeric integration of F̂1 over F̂0

or F̂ where F̂ denotes the empirical distribution function

F̂ (s) =

∑
i I(S(i) ≤ s)

n
. (4)

The AUC and hence the accuracy ratio AR are related to the Wilcoxon rank sum test and
its equivalent, the Mann–Whitney U test. Both are classical nonparametric tests to check
if two distributions are identical, in our case F0 and F1. In its simplest form, the U test
is derived for continuous score distributions. Denote by S0 the score given non-default and
by S1 the score given default. Let S

(i)
0 and S

(k)
1 be two sample observations from the credit

portfolio. The U test statistic then counts the number of pairs where S
(i)
0 < S

(k)
1 holds, i.e.

Û = #{S(i)
0 < S

(k)
1 } over all i, k. If the score function perfectly separates defaults and

non-defaults we should obviously obtain Û = n0 · n1. If there is no relation between score
and default event, then S

(i)
0 < S

(k)
1 happens with probability 1

2
such that Û ≈ 0.5(n0 · n1).

Consequently, a rescaled version of the test statistics, Û/(n0 · n1) is an estimate for

P{S0 < S1} = 1−
∫

F1(s) dF0(s) = AUC =
AR + 1

2
.

In the case of discrete score distributions this equation involves an additional term for P (S0 =
S1). The U test is another way to formally test our minimal requirement of stochastic
dominance of F1 over F0. Again we wish to stress that our aim is to find a score function
leading to the maximal possible value of AUC or AR.
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3 Credit Scoring under Censoring

A particular problem with credit data in practice is that we usually observe defaults and
non-defaults only for a subsample of applicants. This is so because the bank computes scores
for N applicants but only n of them (n < N) are accepted for a loan. Hence, default and
non-default observations are preselected by a condition which we denote by A. This type of
sample preselection can be described as censoring or sample selection. Note that condition
A formalizes the criterion for granting credit applied by the bank under consideration.

Overlapping for Credits
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Figure 4: Truncated overlapping area for credit data

Obviously, this data sampling will result in biased estimates of all relevant parameters due
to the non-representative data base. We wish to stress that this bias can be positive or
negative. In the sequel, we will see that formally this comes from the fact that we are
working with conditional probabilities. The problem of bias correction in this case has
been mainly studied by using (regression) models that extrapolate on the unobserved data
and with a focus on the estimating regression coefficients and PDs. In the econometric
literature, bivariate regression models for sample selection (Heckman; 1979) are well-known.
For example, Greene (1998) and Boyes et al. (1989) use a bivariate probit model for credit
data. In the statistical literature, this bias correction technique is know as reject inference.
Feelders (2000) and Crook and Banasik (2004) are references here.

To illustrate the effect of censoring (or sample selection) for estimating T , assume again that
we have two continuous densities f0, f1. Assume further for a moment that the censoring
condition has the intuitive form

A = {S ≤ c} , (5)

where c is a threshold such that credit applicants are accepted for a loan if their score S
is smaller than c. Figure 4 shows this modified situation in comparison to Figure 1. The
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distribution right to the black line (here c = 2) cannot be observed but needs in fact to be
considered for a correct assessment of the performance of the score.

Let S̃ and Ỹ denote the observed parts of the score and the group indicator. Hence, we
have only observations for the censored default scores S̃1 and non-default scores S̃0, while we
are interested in the non-censored scores S0 and S1. Under the assumption (5), the relation

between S̃j and Sj (j = 0, 1) is given by

P (S̃j ≤ s) = P (S̃ ≤ s|Ỹ = j) =
P (S̃ ≤ s, Ỹ = j)

P (Ỹ = j)
=

P (S ≤ s, Y = j|A)

P (Y = j|A)
.

From A = {S ≤ c} and P (Sj ≤ s) = P (S ≤ s, Y = j)/P (Y = j) it follows that

P (S̃j ≤ s) =
P (S ≤ s, Y = j)

P (S ≤ c, Y = j)
=

P (Sj ≤ s)

P (Sj ≤ c)
for s ≤ c ,

which then shows

F̃j(s) =
Fj(s)

Fj(c)
for s ≤ c . (6)

Here F̃j denotes the cumulative distribution functions of S̃j. Under the assumption that Sj

has a continuous distribution, (6) results in an equivalent rescaling of the densities by Fj(c).
AskFigure 5 illustrates this case, note the difference to Figure 4 on the vertical scale.

Overlapping of Truncated Densities
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Figure 5: Observed overlapping area R̃

We will now analyse the relation between R̃ and R, the regions of overlapping for the censored
(observed) and the non-censored (partially unobserved) sample. Computing R̃ in the same
way as R and using (6), would hence give

R̃ = min
s

{
F̃1(s) + 1− F̃0(s)

}
= min

s

{
F1(s)

F1(c)
+ 1− F0(s)

F0(c)

}
. (7)
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This shows that the naive calculation of the overlapping region from incompletely observed
data is usually different (biased) from the objective overlapping region R.

The difference in T = 1−R and T̃ = 1− R̃ can be considerably important as the following
Monte Carlo simulation shows. We have simulated 250 data sets, each of N = 500 applicants
for a credit. The scores S(i) of these applicants are generated only once and come from
a normal distribution with expectation −2.5 and variance 1.44. The simulated PDs are
obtained from a Logit model, i.e. we define

p(s) =
1

1 + exp(−s)

and generate the Y (i) as Bernoulli random variables with probability parameter p(S(i)). We
reject the 2% worst scored credit applicants. This leads to a credit portfolio consisting of
n = 490 debitors.

censored full

0.
30

0.
40

0.
50

0.
60

Discriminatory Power T

Figure 6: Difference in T (upper boxplot) and T̃ (lower boxplot)

In Figure 6 boxplots for the realized distributions of the estimated T̃ and T are displayed.
The graphic shows that in our simulated example T̃ is typically smaller than T (in 235 out

of the 250 cases). A similar boxplot could be shown for ÃR and AR. So using T̃ and ÃR
instead of T and AR can mislead in both directions (over- and underestimation) if the bank
wishes to assess the performance of its rating system. Recall that formally this comes from
the fact that the acceptance condition A leads to conditional probabilities.
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4 Inequalities for the Nonparametric Case

As we have seen in Section 3, the computation of T and AR from S̃j requires specific
assumptions on the distributions of Sj and their relations to the censoring condition A. In
the general case in which

the relation between A and S is completely unknown

there is no possibility to estimate these distributions beyond A. As pointed out, this is a
relevant problem for a bank redesigning its rating system since data on rejected applicants
are usually not available.

A possible remedy to this problem is the calculation of lower and upper bounds on the
measures for discriminatory power. Our approach is inspired by Horowitz and Manski (1998)
who consider a similar censoring problem in survey nonresponse. The general assumption
throughout this section is that we know the percentage of rejected loans, i.e. the full number
of credit applicants. Denote this number of all credits (accepted or rejected) by N . Under
the assumption that the percentages of both rejected applicants and defaults are small,
relatively narrow bounds can be found for T and AR. We emphasize that N typically does
not contain applicants who are rejected without being rated.

4.1 Maximum Distance Measure T

Recall that the computation of

T = max
s
{F0(s)− F1(s)}

requires the cumulative distribution functions Fj(s) of Sj = (S|Y = j). However, we only

observe F̃j(s), the cumulative distribution function of S̃j = (S̃j|Ỹ = j) = (S|Y = j,A). To
derive upper and lower bounds for T we have to relate the unobservable function Fj(s) to

the observable function F̃j(s). The following lemma shows this relation. For the sake of
clarity, we have collected all more complex derivations in the appendix.

Lemma 4.1
Using the notation αj = P (A|Y = j), we have

αjF̃j(s) ≤ Fj(s) ≤ 1− αj{1− F̃j(s)}.

To apply this lemma for calculating bounds for T , we need bounds for αj. These follow from

P (Y = j,A) ≤ P (Y = j) ≤ P (Y = j,A) + P (A). (8)

which is a consequence of P (Y = j) = P (Y = j,A) + P (Y = j,A), where A stands for the
complement of A. Since

αj =
P (Y = j|A)P (A)

P (Y = j)
=

P (Ỹ = j)P (A)

P (Y = j)
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it follows by (8) that

αj ∈ [αlow
j , 1], where αlow

j =
P (Ỹ = j)P (A)

P (Ỹ = j)P (A) + P (A)
. (9)

Lemma 4.1 together with (9) yields upper and lower bounds for T . We summarize this result
in the following proposition:

Proposition 4.2
Bounds for T are given by

max
s

[
αlow

0 F̃0(s) + αlow
1 {1− F̃1(s)}

]
− 1

≤ T ≤ 1−min
s

[
αlow

0 {1− F̃0(s)}+ αlow
1 F̃1(s)

]
.

We wish to stress that in the special case of no censoring (i.e. if all credit applicants
were accepted for a loan and we observe their default or non-default) we have P (A) = 0
and αlow

0 = αlow
1 = 1. As a consequence, the inequality of Proposition 4.2 reduces to

T = max {F0(s)− F1(s)} which is exactly the definition for the uncensored case.

Let us further remark that the bounds in Proposition 4.2 are quite useful but not the optimal
ones. In contrast to Horowitz and Manski (1998), we can exploit that the probabilities of
default and non-default are complements and cannot vary independently. Using this fact, we
can derive improved bounds which are summarized in Proposition 4.3. It turns out, however,
that in Monte-Carlo simulations the improvement by Proposition 4.3 is very modest. We
refer here to the simulation example presented in Section 5.

Proposition 4.3
Improved bounds for T are given by

max
s

[
β0

pup
s

F̃0(s) +
β1

1− pup
s
{1− F̃1(s)}

]
− 1

≤ T ≤ 1−min
s

[
β0

plow
s

{1− F̃0(s)}+
β1

1− plow
s

F̃1(s)

]
,

where βj = P (Y = j,A) and the functions plow
s and pup

s are defined as in (14) and (17) in
the appendix.

To apply these bounds to empirical data, we need to estimate all unknown quantities in
Proposition 4.2 or 4.3. This is possible because we know the total number of scored credit
applicants N . More precisely: For the observed scores under default and non-default we

know their empirical distribution functions
̂̃
F j which can be obtained analogously to (2). To
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estimate αlow
j , βj, plow

0 , and pup
0 we consider the probabilities of {Ỹ = j} = {Y = j|A}, A,

and A, which can be approximated by their observed relative frequencies

P̂ (Ỹ = j) =
nj

n
, P̂ (A) =

n

N
, P̂ (A) =

N − n

N
. (10)

Here n0 denotes the number of observed non-defaults and similarly n1 denotes the number
of observed defaults. As before, n stands for the sample size of the observed credits (i.e.
n = n0 + n1). This provides the estimates

α̂low
j =

nj

nj + N − n
, β̂j =

nj

N
. (11)

Estimates for plow
0 and pup

0 can be found by substituting β̂j, P̂ (A) and
̂̃
F j(s) into (14)–(15)

and (17)–(18).
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Figure 7: Estimated T (smooth solid line), T̃ (solid) and bounds (dashed)

The following Monte Carlo simulation illustrates the effect of the estimated bounds. We
use the previously simulated data set. Figure 7 shows estimates for T , T̃ and the estimated
upper and lower bounds according to Proposition 4.3 for all 250 simulated data sets. To
simplify the comparison, all simulated values are sorted by the estimated values of T . The
bounds according to Proposition 4.2 are only slightly wider so that we omit them here.
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Note that in practice the estimation of T̂ could not have been carried out because data on
rejected applicants are usually not collected. However, due to our simulation experiment, we
have the opportunity to estimate both T̃ and T . The simulation analysis shows in particular,
that T might be smaller or larger than T̃ . A closer inspection of the simulated data reveals
that T̃ tends to be larger than T if P (Ỹ = 1) ≈ P (Y = 1). In other words, T̃ tends to
overestimate T if the censoring condition does reject a too small number of defaults. In these
cases using T̃ instead of T would have led to a too optimistic value for the discriminatory
power of the score. The upper and lower bounds, however, lead to a correctly specified range
for T̂ .

We see that the lower bound in Figure 7 seems to be quite far away from both estimated T and
T̃ . This is a consequence of the fact that our bounds do not require any information about
the structure of the censoring condition A. A narrower lower bound could be calculated if
additional information on A is available, for example if A is determined by a different score
S? and we know the dependence structure between S and S?.

4.2 Accuracy Ratio AR

We consider the censored accuracy ratio

ÃR =
G̃

P (Ỹ = 0)
,

where G̃ denotes the censored Gini coefficient and P (Ỹ = 0) = P (Y = 0|A). Thus, analo-

gously to T̃ , the Gini coefficient G̃ and the accuracy ratio ÃR are biased. We will show how
to obtain upper and lower bounds for both G and AR.

Percentage

100%

100%

of observed
defaults

1−F(s|Y=1,A)

Percentage of  observed applicants
1−F(s|A)

G
~

2
_1

observed loans
Lorenz curve of

Figure 8: Lorenz curve under censoring

Suppose that the Lorenz curve for the observed loans looks as in Figure 8. To obtain lower
and upper bounds for the Lorenz curve of all credit applicants, we consider two extreme
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cases for the unobserved part: the unobserved loans possess either the lowest or the best
ratings. These assignments lead to the Lorenz curves in Figure 9.

Hence, lower and upper bounds for G (and subsequently for AR) can be derived by calculat-
ing the areas under the curves in Figure 9. The resulting inequality for AR is summarized
by the following proposition. As before we refer to the appendix for a detailed proof.

Proposition 4.4
Bounds for AR are given by(

ÃR + 1
) β0β1

p?
0(1− p?

0)
− 1 ≤ AR ≤

(
ÃR− 1

) β0β1

p?
0(1− p?

0)
+ 1

where again βj = P (Y = j,A) and

p?
0 =


β0 if β0 > 1

2
,

1
2

if β0 ≤ 1
2
≤ β0 + P (A) ,

β0 + P (A) if β0 + P (A) < 1
2
.

Let us remark that in the special case if all credit applicants are accepted, it holds p?
0 = β0

and 1 − p?
0 = β1. Hence, the upper and lower bounds for the Lorenz curve as well for Gini

coefficient and accuracy ratio coincide with their respective values in the non-censored case.

In practice, we use the estimates α̂low
1 ,

̂̃
F 1(s), P̂ (A) from Section 4 and

̂̃
F (s) =

∑
i I(S(i) ≤ s)

n
.

To illustrate the result of Proposition 4.4, we use the data from the Monte Carlo simulation
in Section 4 again. Figure 10 shows the estimated AR and ÃR as well as the estimated
upper and lower bounds according to all 250 simulated data sets (sorted by the estimated

ARs). We find ÂR >
̂̃
AR in 237 (out of the 250) cases.

As for T we can conclude that using ÃR instead of AR would have led to too large or small
values for the discriminatory power of the score, whereas the upper and lower bounds provide
a correctly specified range for ÂR. The remarks on the simulation in Section 4 apply here
as well. We see, however, that the estimated bounds are wider (relative to the values of ÃR
and AR) and that the lower bound may be negative. Thus, only the upper bound has a
useful interpretation.
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Figure 9: Lorenz curves under censoring
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Figure 10: Estimated AR (smooth solid line), ÃR (solid) and bounds (dashed)

5 Application

Let us now consider a brief illustration on real data. We use the data from Fahrmeir and
Tutz (1994) which are publicly available1. The data set comprises 1000 observations of
private loans. One of the variables is credit history. We will now assess discriminatory
power under the assumption that customers with a negative credit history (those which
showed a “hesitant payment of previous credits”) would not have granted a loan and that
their default or non-default would not have been observed. This means we use a sample of
n = 960 observed customers whereas the sample size of all applicants is equal to N = 1000.

We estimate two different Logit specifications. The corresponding variables are listed in
Table 1. The first specification uses more personal and credit information but is not a
superset of the second specification. We compare the scores estimated by a Logit model
with respect to T and AR. The resulting criteria on the observed data as well as the
estimated lower and upper bounds are shown in Table 2.

We recognize that as in Figures 7 and 10 the intervals for AR are clearly wider. Consequently,
information that we get out of the interval estimates is more precise in the case of T .
In particular, we observe a negative lower bound for AR in specification 2. However, in
this special example the intervals for AR do not have an intersection. This means that

1See http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit.html.
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Variable Specification 1 Specification 2
previous loans
(1 for OK, 0 for unknown)

×

employed
(1 for more than one year, 0 otherwise)

×

duration of the loan
(discretized with dummies for 10–12, 13–18, 19–
24 and more than 24 months)

×

amount of the loan (+ amount squared) × ×
age of the borrower (+ age squared) ×
interaction term for amount and age ×
savings
(1 for more than 1000 DM, 0 otherwise)

×

foreigner
(1 if yes, 0 otherwise)

×

purpose
(1 if loan is used to buy a car, 0 otherwise)

×

house owner
(1 if yes, 0 otherwise)

×

Table 1: Variables for score estimation

Estimated criterion Specification 1 Specification 2

T̃ 0.292 0.159
maximal range of T [0.222,0.349] [0.108,0.235]

ÃR 0.419 0.125
maximal range of AR [0.238,0.492] [-0.018,0.236]

Table 2: Discriminatory power of the scores

specification 1 is definitely better than specification 2. Here, the unobserved data cannot
improve the accuracy ratio for specification 2 over that for specification 1.

6 Conclusions

The discriminatory power of a credit score can be estimated by comparing the score distri-
butions of the defaults with that of the non-defaults or the full sample. We consider two
possible criteria in this paper: The maximal difference of the cumulative score distribution
functions for non-defaults and defaults

T = max
s
{F0(s)− F1(s)}

and the accuracy ratio

AR =
1− 2

∫
F1(s) dF (s)

P (Y = 0)
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As we have seen, a censored sample can lead to considerable bias when using the criteria
to evaluate the score with respect to discriminatory power. Our simulations show that
the bias might be positive or negative, i.e. there is no simple rule to take account for
this bias. Corrected calculations of the criteria are possible if details about the rejected
credit applicants are known. However, often no precise information about these applicants
is available. For this case the paper demonstrates how to assess discriminatory power by
computing lower and upper bounds of such criteria. The calculation of bounds is possible
under the weak assumption that only the percentage of rejected credits is known.

Appendix: Proofs

Proof of Lemma 4.1

We have

Fj(s) = P (S ≤ s|Y = j) = P (S ≤ s,A|Y = j) + P (S ≤ s,A|Y = j)

= P (S ≤ s|A, Y = j)P (A|Y = j) + P (S ≤ s,A|Y = j),

hence
Fj(s) = F̃j(s) P (A|Y = j) + P (S ≤ s,A|Y = j). (12)

We find an upper bound for Fj(s) by using that {S ≤ s} ∩ A ⊆ A in the second term of
(12), i.e.

Fj(s) ≤ F̃j(s)P (A|Y = j) + P (A|Y = j) = 1− P (A|Y = j){1− F̃j(s)}.

A lower bound for Fj(s) is given by omitting the second term of (12) completely, such that

Fj(s) ≥ F̃j(s)P (A|Y = j).

�

Proof of Proposition 4.2

The result follows directly by combining Lemma 4.1 and the bounds in (9). �

Proof of Proposition 4.3

We introduce the additional abbreviations βj = P (Y = j,A) and

p = P (Y = 0),

such that α0 = β0/p and α1 = β1/(1− p). We will first consider bounds for R and later on
transfer them into bounds for T .

Consider the lower bound for R first. From the proof of Lemma 4.1 we see

F1(s) + 1− F0(s) ≥ α1F̃1(s) + α0{1− F̃0(s)}

=
β1

1− p
F̃1(s) +

β0

p
{1− F̃0(s)} (13)
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In the last term each of the probabilities can be estimated from the observed data except for p.
Hence, for given s the last term has to be minimized with respect to p. For this minimization
one has to consider the three cases β1F̃1(s) = β0{1− F̃0(s)}, β1F̃1(s) > β0{1− F̃0(s)}, and

β1F̃1(s) < β0{1− F̃0(s)}, which all lead to the same optimum:

plow
s =


β0 if γs < β0,
β0 + P (A) if γs > β0 + P (A),
γs, otherwise,

(14)

and

γs =

√
β0{1− F̃0(s)}√

β0{1− F̃0(s)}+

√
β1F̃1(s)

. (15)

The upper and lower thresholds in (14) are consequences of the bounds in (8).

To derive the upper bound of R we have again from the proof of Lemma 4.1

F1(s) + 1− F0(s) ≤ 2− α1{1− F̃1(s)} − α0F̃0(s)

= 2− β1

1− p
{1− F̃1(s)} −

β0

p
F̃0(s). (16)

Maximization of the last term with respect to p leads to a similar result as before:

pup
s =


β0 if δs < β0,
β0 + P (A) if δs > β0 + P (A),
δs, otherwise,

(17)

and

δs =

√
β0F̃0(s)√

β0F̃0(s) +

√
β1{1− F̃1(s)}

. (18)

Combining the results we obtain

β1

1− plow
s

F̃1(s) +
β0

plow
s

{1− F̃0(s)}

≤ F1(s) + 1− F0(s) ≤ 2− β1

1− pup
s
{1− F̃1(s)} −

β0

pup
s

F̃0(s) (19)

such that by using T = 1−R the statement is proved. �

Proof of Proposition 4.4

We recall the notation βj = P (Y = j,A), which allows us to write β0 + β1 instead of P (A).
Additionally, we introduce the notation

pj = P (Y = j).

Obviously these probabilities are related by p0 + p1 = 1. We can now express the following
terms using pj and βj.

P (Y = j|A) =
βj

β0 + β1
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ÃR =
β0 + β1

β0

G̃ ⇐⇒ G̃ =
β0

β0 + β1

ÃR

P (A, Y = j) = pj − βj

P (A|Y = j) =
pj − βj

pj

Consider first the lower bound for AR. From the first plot of Figure 9 we see that the lower
bound for G (twice the area under the curve minus 1) equals

Glow = P (A)P (A|Y = 1)G̃ + P (A)P (A|Y = 1)

+ P (A, Y = 1) {1− P (A|Y = 1)} − 1

= (β0 + β1)
β1

p1

(G̃ + 1)− (p1 − β1)

(
1 +

β1

p1

)
− 1 .

Using the relation between G̃ and ÃR leads to

Glow =
1

p1

{
(ÃR + 1) β0β1 − p0p1

}
.

Thus we obtain

ARlow =
Glow

p0

=
(
ÃR + 1

) β0β1

p0p1

− 1 . (20)

We now use the same approach for the upper bound of AR. From the second plot in Figure 9
we calculate as an upper bound for G

Gup = P (A|Y = 1)P (A, Y = 1) + P (A)P (A|Y = 1)G̃

+ P (A) {P (A|Y = 1) + 1}+ P (A, Y = 0)− 1

=
p1 − β1

p1

(p1 − β1) + (β0 + β1)
β1

p1

G̃

+ (β0 + β1)

(
p1 − β1

p1

+ 1

)
+ 2(p0 − β0)− 1

=
1

p1

{
β0β1(ÃR− 1) + p0p1

}
.

This results in

ARup =
Gup

p0

=
(
ÃR− 1

) β0β1

p0p1

+ 1 . (21)

Hence, we obtain together with (20)(
ÃR + 1

) β0β1

p0p1

− 1 ≤ AR ≤
(
ÃR− 1

) β0β1

p0p1

+ 1 . (22)

To achieve the minimal value for the lower and the maximal value for the upper bound, it
is obvious that p0p1 = p0(1 − p0) must be maximal. It is important to note that p0 cannot
vary freely since from (8) we have

β0 ≤ p0 ≤ β0 + P (A) .

As a consequence, we have to distinguish three cases:
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(1) β0 ≤ 1
2
≤ β0 + P (A)

In that case, the value that maximizes p0(1 − p0) is p?
0 = 1

2
(as if p0 could take on all

values between 0 and 1).

(2) 1
2

< β0

Here, the optimal value is p?
0 = β0.

(3) 1
2

> β0 + P (A)

Here, the optimal value is p?
0 = β0 + P (A).

�
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