Semiparametric Analysis of German East-West Migration – Facts and Theory

Michael C. BURDA 1 Wolfgang HÄRDLE 2 Marlene MÜLLER 2 Axel WERWATZ 2

 1 Institut für Wirtschaftstheorie II 2 Institut für Statistik und Ökonometrie $^{1\,+\,2}$ Sonderforschungsbereich 373

Wirtschaftswissenschaftliche Fakultät Humboldt-Universität zu Berlin, Germany

Introduction

- German East-West migration in 1991
- microdata from the German Socio Economic Panel (GSOEP), n=3367
- Generalized Linear Model (GLM) does not fit the data
- semiparametric Generalized Partial Linear Model (GPLM) reveals nonlinear influence of household income on migration propensity
- this nonlinear influence is compatible with the option value approach of Burda (95)

Classical Economic Theory

- income is key determinant of migration
- difference between income the host region W^W and income at home W^E at time t (1991: t=0): $\Omega_t = W^W_t W^E_t$
- forward-looking agent will consider expected net present value (ENPV) =

EPV of income from migrating

- EPV of income from not-migrating
- fixed costs of migrating
- under standard assumptions ENPV is a linear function of current (=1991) income differential Ω_0 .

Example:

 Ω_t follows Brownian motion with drift u :

$$d\Omega_t = \nu dt + \sigma dz_t$$

where $dz_t = \epsilon_t \sqrt{dt}$, $\epsilon_t \sim N(0,1)$.

$$\Rightarrow$$
 ENPV $=V^{m}=rac{1}{\delta}\left(\Omega_{0}+
u/\delta
ight)-F$

where δ is the rate of discount.

Marshallian decision rule

$$Y = 1 \qquad \text{if } V^m > 0$$

$$Y = 0$$
 otherwise

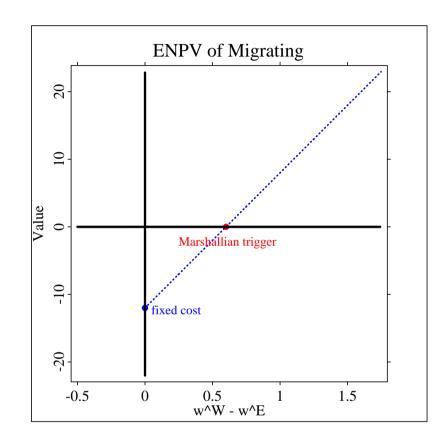


Figure 1: Marshallian theory of migration

The Data

- 3367 observations from GSOEP's 2nd East-German wave (spring of 1991)
- dependent variable *Y*: migration *propensity*
- measuring current income differential Ω_0 : imputation is prone to error (self-selection, unemployed, out of the labor force) include income in East (W_0^E) only
- 11 explanatory variables
- All calculations were done in XploRe[©]. See http:/www.xplore-stat.de

Summary statistics

			Expected
		 Mean	-
7.7			LifeCt
Y	migration intention	.39	
X_1	female	.51	
X_2	partner	.85	_
X_3	owner	.32	_
X_4	family/friends in west	.85	_
X_5	unemp./jobloss certain	.20	+
X_6	env. satisfaction	3.9	_
X_7	city size $< 10,000$.52	
X_8	city size 10-10,000	.34	
X_9	university degree	.08	
X ₁₀	age	39.4	_
	min: 18, max: 65		
X_{11}	household income	2189.5	
	min: 200, max: 4000		

Parametric Estimation Results

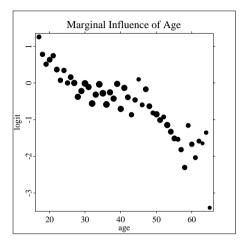
GLM (Logit) estimates of β in $E[Y|x] = 1/\{1 + \exp(-\beta^T x)\}.$

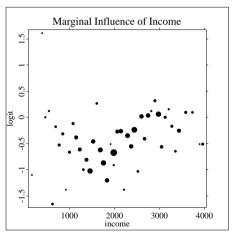
dependent variable: migration intention				
Variable	\widehat{eta}	t		
constant	1.864	7.74		
female	233	-3.03		
partner	325	-2.87		
owner	576	-5.79		
family/friends in west	.647	5.61		
unemployed	.217	2.24		
env. satisfaction	057	-3.52		
city size < 10,000	718	-5.69		
city size 10-100,000	347	-2.91		
university degree	.481	3.56		
age	050	-14.89		
household income	.0001202	2.22		

sample size: 3367, log likelihood: -1992.7

income & age: linear or nonlinear?

age and income vs. the logits $\log \{\widehat{p}/(1-\widehat{p})\}$





Semiparametric Model

Latent-variable assumption

GLM:
$$Y = 1$$
 if $Y^* = x^T \beta + \alpha t + \alpha_0 - u > 0$

GPLM:
$$Y = 1$$
 if $Y^* = x^T \beta + m(t) - u > 0$

t: income in the East (W_0^E)

Distributional assumption

GLM & GPLM:
$$F_{u|x,t}(\bullet) = \frac{1}{1 + \exp(-\bullet)}$$

GPLM:

$$E(Y|x,t) = \frac{1}{1 + \exp[-\{x^T\beta + m(t)\}]}$$

Semiparametric Estimation

- $\widehat{\beta}$ can be found for known m_{i}
- \widehat{m} can be found for known β .

Iterative algorithm (Link function!) employs:

ullet "usual" likelihood for eta

$$\mathcal{L}(\beta) = \sum_{i=1}^{n} L\left\{x_i^T \beta + m_{\beta}(t_i); y_i\right\}$$

• "smoothed" likelihood for m(t)

$$\mathcal{L}^{S}\{m_{\beta}(t)\} = \sum_{i=1}^{n} K_{h}(t - t_{i}) L\{x_{i}^{T}\beta + m_{\beta}(t); y_{i}\}$$

Severini & Staniswalis (1994), Severini & Wong (1992), Hastie & Tibshirani (1990), Speckman (1988)

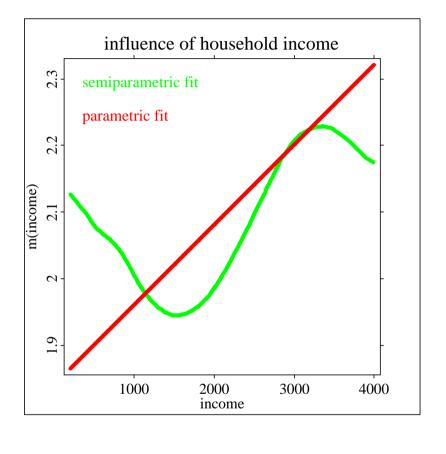
Semiparametric Estimation Results

dependent variable: migration intention					
	GPLM		Logit		
Variable	\hat{eta}	t	\hat{eta}	t	
female	238	-3.1	233	-3.0	
partner	282	-2.4	325	-2.9	
owner	569	-5.7	576	-5.8	
family/friends in west	.640	5.5	.647	5.6	
unemployed	.216	2.2	.217	2.2	
env. satisfaction	.056	-3.5	057	-3.5	
city size < 10,000	689	-5.4	718	-5.7	
city size 10-10,000	323	-2.7	347	-2.9	
university degree	.471	3.5	.481	3.6	
age	050	-14.9	050	-14.9	
2007 les libertes 1000 0 1 000					

sample size: 3367, log likelihood: -1989.8, h=0.3

GPLM estimates are close to Logit counterparts

estimated influence of income: $\widehat{m}(t)$



Semiparametric Specification Testing

test that m(t) is a linear function:

 H_0 : $m(t) = \alpha t + \alpha_0$,

 H_1 : m(t) is an arbitrary smooth function,

Likelihood ratio test (Hastie & Tibshirani, 1990)

$$R = 2\sum_{i=1}^{n} \{ L(\widehat{\mu}_i, y_i) - L(\widetilde{\mu}_i, y_i) \}$$

semiparametric: $\widehat{\mu}_i = G\{x_i^T \widehat{\beta} + \widehat{m}(t_i)\}$

parametric: $\widetilde{\mu}_i = G\{x_i^T\widetilde{\beta} + \widetilde{\alpha}\,t + \widetilde{\alpha}_0\}$

 \widehat{m} has a non-negligible smoothing bias

Modified likelihood ratio test

bias-corrected parametric estimate

$$\overline{m}(t_j)$$

from

$$\{G(x_i^T\widetilde{\beta} + \widetilde{\alpha}t_i + \widetilde{\alpha}_0), x_i, t_i\}, \quad i = 1, \dots, n$$

modified LR statistic

$$R^{M} = 2\sum_{i=1}^{n} \{ L(\widehat{\mu}_{i}, \widehat{\mu}_{i}) - L(\overline{\mu}_{i}, \widehat{\mu}_{i}) \}$$

where $\overline{\mu}_i = G\{x_i^T\widetilde{\beta} + \overline{m}(t_i)\}$

Härdle, Mammen & Müller (1996)

asymptotically equivalent

$$\widetilde{R}^{M} = \sum_{i=1}^{n} w_{i} \left\{ x_{i}^{T} (\widehat{\beta} - \widetilde{\beta}) + \widehat{m}(t_{i}) - \overline{m}(t_{i}) \right\}^{2}$$

with

$$w_i = \frac{[G'\{x_i^T \widehat{\beta} + \widehat{m}(t_i)\}]^2}{V[G\{x_i^T \widehat{\beta} + \widehat{m}(t_i)\}]}.$$

Asymptotic Normality

Under linearity hypothesis

(i)
$$R^M = \widetilde{R}^M + o_p(v_n)$$
,

(ii)
$$v_n^{-1}(R^M - e_n) \xrightarrow{D} N(0,1)$$
,

where

$$e_n = \left\{ \lambda_T \cdot \int K(u)^2 du \right\} \{h_1 \dots h_q\}^{-1},$$

 $v_n^2 = 2 \left[\lambda_T \int \{K \star K(u)\}^2 du \right] \{h_1 \dots h_q\}^{-1},$

Bootstrap works

It holds

$$d_K(R^{M*}, R^M) \xrightarrow{P} 0$$

where d_K denotes the Kolmogorov distance.

1. Generate samples y_1^*, \ldots, y_n^* with

$$E^*(y_i^*) = G(x_i^T \widetilde{\beta} + \widetilde{\alpha} t_i + \alpha_0)$$

2. Calculate estimates based on the bootstrap samples and finally the test statistics R^{M*} . The quantiles of the distribution of R^{M} are estimated by the quantiles of the conditional distributions of R^{M*} .

Test Results

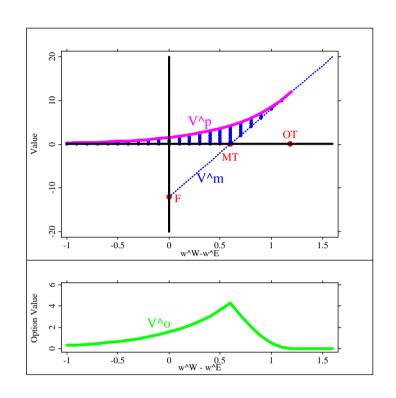
h	0.1	0.2	0.25	0.3	0.4
R	0.028	0.021	0.019	0.017	0.016
R^M	0.053	0.069	0.130	0.269	0.602
R^{M*}	0.015	0.005	0.005	0.005	0.010

- ullet clear rejection of the linearity hypothesis across all bandwidths for R and the bootstrapped R^{M*} .
- The normal approximation for \mathbb{R}^M works bad for higher bandwidth levels (Müller, 1997)

Theoretical Explanation I

Option Value of the Migration Investment

- Marshallian theory: migration occurs now or never.
- Dixit and Pindyck (1994): postponement of the decision without forsaking it can be a valuable option
- delaying migration: more information can be acquired while fixed cost can be avoided
- ullet migrating today means forgoing the opportunity to postpone migration option value of waiting V^o .
- ullet $V^o=$ what one is willing to pay for the option to postpone the migration decision rather than having to decide now or never



 $V^p: \ensuremath{\mathsf{expected}}$ net present value from postponing migration

 $V^m: \ensuremath{\mathsf{expected}}$ net present value from migrating today

 V^o : option value of waiting

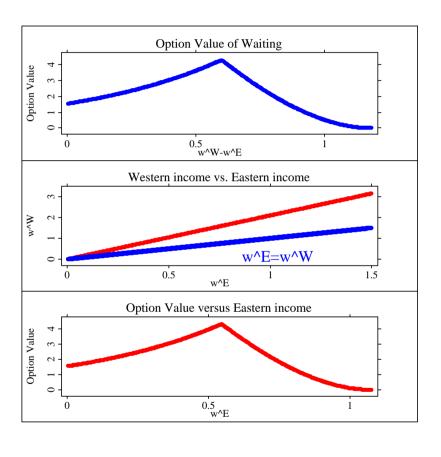
Marshallian decision rule

$$Y=1$$
 if $rac{1}{\delta}(\Omega_0+
u/\delta)-F>0$ $Y=0$ otherwise

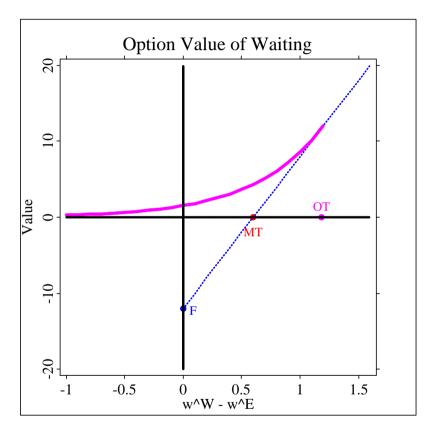
Option value decision rule

$$Y=1$$
 if $\frac{1}{\delta}\left(\Omega_0+
u/\delta\right)-F-V^o(\Omega_0)>0$ $Y=0$ otherwise

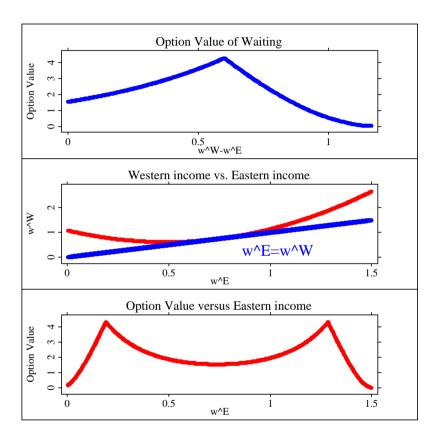
income differential versus income in East.



Theoretical Explanation II



income differential versus income in East.



Conclusions

- empirical analysis of the propensity to migrate using microdata from the GSOEP
- parametric GLM did not fit the data
- semiparametric GPLM fit produced
 U-shaped relation between income and
 migration propensity
- U-shaped relation significantly deviates from linearity
- estimated influence may be explained by a number of alternative determinants of migration, including the recently proposed option-value-of-waiting theory

