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Credit Rating/Scoring

• rating

classification of individuals (private, corporate, sovereign) into groups of

equivalent default risk

• rating score

quantitative indicator of individual default risk

• individual default probability (PD)

? typically a one-to-one mapping of the score

? basis to construct rating groups
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Methods to Estimate Scores and PDs

• discriminance analysis, classification

→ Scores

• categorical regression (logit/probit, panel, ordered categories)

→ Scores + PDs

• Merton approach (stock price as estimate for the market value)

→ Scores by “distance to default”
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Censoring

� not all credit applicants obtain a loan ⇒ no representative sample

as a consequence:

• estimates are be biased

• problem of bias accumulation over time

possible remedies:

• model the process of credit acceptance/rejection

• find bounds for the estimates that reflect the worst cases

(nonparametric solution)
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Data Example

sample of private loans

• default indicator: Y ∈ {0, 1}, where 1 = default

• explanatory variables:

? personal characteristics (age, occupation, telephone, savings)

? credit characteristics (amount, duration)

? credit history (previous credits)

• sample size: 1000 (300 defaults!)

How to evaluate if a subset of the customers (e.g. those which showed

“hesitant payment of previous credits”) would not have granted a loan?

References: Fahrmeir/Hamerle (1984); Fahrmeir & Tutz (1995)
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Evaluation of Credit Scores

main objectives:

• discriminatory power:

→ relative assessment of the PDs

• calibration:

→ absolute assessment of the PDs

References: cf. Krämer (2000), Deutsche Bundesbank Monthly Report (Sept. 2003)
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Score Distributions of Defaults vs. Non-Defaults
Overlapping of Densities
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• defaults • non-defaults

from a statistical point of view

? overlapping region ≈ U = min
s

{F1(s) + 1 − F0(s)}

(Fj denote the CDFs)

? T = 1 − U corresponds to the Kolmogorov-Smirnov test statistic

⇒ maximal deviation between F0 and F1
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Score Distributions of Defaults vs. Full Sample

? Lorenz curve (power curve, cumulated

accuracy profile, CAP)

1 − F (s) = P (S > s) vs.

1 − F1(s) = P (S > s|Y = 1)

? Gini coefficient G, accuracy ratio AR

AR =
G

Gopt

=
G

P (Y = 0)

PD

1−F(s)

optimal curve

Percentage

100%

100%

1−F(s|Y=1)

Lorenz curve

2
1_ G

Percentage of applicants

of defaults

from a statistical point of view

? AR is a linear function of the Mann-Whitney U test statistic

? alternative ROC curve: AR = 2·AUC − 1

⇒ average deviation between F0 and F1
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Censored Sample

• not all credit applicants obtain a loan ⇒ no representative sample

Overlapping of Densities

-4 -2 0 2 4

s

0
0.

1
0.

2
0.

3
0.

4

f0
, f

1
Overlapping for Credits
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• defaults • non-defaults

• evaluation criteria are biased

(bias in both directions, due to conditional probabilities)

• problem of bias accumulation over time
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How to Correct for Censoring?

• econometric models

? censored (bivariate) probit (Greene, 1998; Boyes/Hoffman/Low, 1989)

• “reject inference”

? give loans to all applicants for a certain period (e.g. Hand, 2002)

? re-classification (Ash/Meester, 2002)

? re-weighting (Ash/Meester, 2002; Crook/Banasik, 2002)

? extrapolation (Ash/Meester, 2002; Crook/Banasik, 2002)

• bounds

? identification and PDs (Horowitz/Manski, 1998)

? discriminatory power (Kraft/Kroisandt/Müller, 2002+2003)
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Discriminatory Power under Censoring

notation:

• default Y ∈ {0, 1}

• score S (function of the explanatory variables X1, . . . , Xp)

• condition for acceptance: A

we can estimate:

• all values given A (such as P (Y = j|A), F (s|Y = j,A))

unknown are:

• all unconditional terms (such as P (Y = j), F (s|Y = j))
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Idea

• numbers of accepted and rejected loans are known:

n accepted loans

N accepted+rejected loans

(realistic requirement, since often details on rejected loans are not

available)

• advantages:

? universal approach since no parametric assumptions on the selection

mechanism are needed

? verification of parametric assumptions is possible

11



Technical Details

we search for the relation between

• the unobservable CDF Fj(s) = P (S ≤ s|Y = j) and

• the observable CDF F̃j(s) = P (S ≤ s|Y = j,A)

due to the theorem on the total probability it is simple to derive lower and

upper bounds:

Fj(s) ≤ F̃j(s)P (A|Y = j) + P (A|Y = j)

Fj(s) ≥ F̃j(s)P (A|Y = j)

Reference: similar to Horowitz & Manski (1998)
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Lemma 1

Using the notation αj = P (A|Y = j) it holds

αjF̃j(s) ≤ Fj(s) ≤ 1 − αj{1 − αjF̃j(s)}.

Lemma 2

For αj we have

αlow
j ≤ αj ≤ 1 with αlow

j =
P (Y = j|A)P (A)

P (Y = j|A)P (A) + P (A)
.

13



Comparison of Score Distributions

discriminatory power criterion

T = 1 − U = max
s

{F0(s) − F1(s)}

U eU = (U |A) (here A = {S ≤ c})
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Proposition 1

Bounds for T are given by

max
s

[
αlow

0 F̃0(s) + αlow
1 {1 − F̃1(s)}

]
− 1

≤ T ≤ 1 − min
s

[
αlow

0 {1 − F̃0(s)} + αlow
1 F̃1(s)

]
,

Proof: Lemmas 1+2

BUT:

P (Y = 1|A) and P (Y = 0|A) can (of course) not vary freely.

⇒ improved bounds can be found
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Proposition 2

Improved bounds for T are given by

max
s

[
β0

p
up
s

F̃0(s) +
β1

1 − p
up
s

{1 − F̃1(s)}

]
− 1

≤ T ≤ 1 − min
s

[
β0

plow
s

{1 − F̃0(s)} +
β1

1 − plow
s

F̃1(s)

]
,

where βj = P (Y = j,A) and

p
low
s resp. p

up
=

8
>><
>>:

β0 if γs < β0,

β0 + P (A) if γs > β0 + P (A),

γlow
s resp. γup, otherwise,

γ
low
s =

q
β0{1 − eF0(s)}

q
β0{1 − eF0(s)} +

q
β1

eF1(s)

, γ
up
s =

q
β0

eF0(s)
q

β0
eF0(s) +

q
β1{1 − eF1(s)}

.
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Monte Carlo Simulation

all terms in the propositions are estimable if N is known, in particular:

P̂ (A) = 1 −
n

N

we estimate all unknown terms by relative frequencies or empirical CDFs

• simulation sample size: 250

• credit applicants: N = 500, rejected loans: 2%

• simulated model: S normal, P (Y = 1|S) logit
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Discriminatory Power T

simulations

• estimated T

• estimated eT = (T |A)

• estimated bounds

• eT over- and underestimates T

• lower bound is “far away” as con-

sequence of the very general se-

lection condition A

• narrower bounds can be found

if the selection condition is mo-

re precisely specified, such as A =

{S ≤ c}

• if N = n (no censoring), all curves

are identical
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Accuracy Ratio

Lorenz curve

{1 − F (s), 1 − F1(s)}

Gini coefficient
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“Censored Lorenz Curve”

Percentage

100%

100%

of observed
defaults

1−F(s|A)

1−F(s|Y=1,A)

1
2
_ G~

Lorenz curve of
observed loans

Percentage of  observed applicants

20



Lower and Upper Bounds

extreme cases are Y = 1 resp. Y = 0 for all rejected applicants (in A)
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Proposition 3

We denote again βj = P (A, Y = j). Bounds for AR are given by:

(
ÃR + 1

) β0β1

p?
0(1 − p?

0)
− 1 ≤ AR ≤

(
ÃR − 1

) β0β1

p?
0(1 − p?

0)
+ 1

where

p?
0 =





β0 if β0 > 1
2 ,

1
2 if β0 ≤ 1

2 ≤ β0 + P (A) ,

β0 + P (A) if β0 + P (A) < 1
2 .
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Monte Carlo Simulation
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simulations

• estimated T

• estimated eT = (T |A)

• estimated bounds

• gAR over- and underestimates AR

• lower bound is “far away” as con-

sequence of the very general se-

lection condition A

• narrower bounds can be found

if the selection condition is mo-

re precisely specified, such as A =

{S ≤ c}

• if N = n (no censoring), all curves

are identical

• bounds are wider (relative to size

of AR)
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Application to Data

recall

• sample of N = 1000 private loans (300 defaults)

“artificial” censoring

• assume that customers with a negative credit history (those which

showed a “hesitant payment of previous credits”) would not have

granted a loan

• sample size of observed n = 960 (275 defaults)

• estimate 2 model specifications (logit)
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Variable Specification 1 Specification 2

previous loans

(1 for OK, 0 for unknown)

×

employed

(1 for more than one year, 0 otherwise)

×

duration of the loan

(discretized with dummies for 10–12, 13–18, 19–24 and

more than 24 months)

×

amount of the loan (+ amount squared) × ×

age of the borrower (+ age squared) ×

interaction term for amount and age ×

savings

(1 for more than 1000 DM, 0 otherwise)

×

foreigner

(1 if yes, 0 otherwise)

×

purpose

(1 if loan is used to buy a car, 0 otherwise)

×

house owner

(1 if yes, 0 otherwise)

×
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Estimated Scores

Score 1 = 0.162 − 0.696???·previous + 0.496?· (d9-12) + 0.818???· (d12-18)

+0.919???· (d18-24) + 1.502???· (d>24) − 0.91???· savings

+0.976· foreign − 0.339?·purpose + 0.614???·house

−0.000277??· amount − 0.0971??· age

+0.0000000185??· amount2 + 0.00086?· age2

+0.00000272· (amount · age)

Score 2 = −0.807?? − 0.244· employed

−0.0000279· amount + 0.0000000114?· amount2
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Bounds of the Lorenz curve (Specification 1)
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• upper bound

• lower bound

• Lorenz curve for all applicants
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Estimated criterion Specification 1 Specification 2

eT 0.292 0.159

maximal range of T [0.222,0.349] [0.108,0.235]

gAR 0.419 0.125

maximal range of AR [0.238,0.492] [-0.018,0.236]

The quality of the bounds is determined by ...

• sample size

? precision of estimates

? sensitivity to outliers

• number of defaults

• ratio of rejected to all applicants

• macroeconomic changes

Reference: Parnitzke (diploma thesis, 2003)
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Summary

• censoring leads to bias in (any) evaluation criterion

• no systematic bias (under- and overestimation may occur)

• lower and upper bounds can be estimated even in the case that only the

number of all credit applicants is known
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