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Application: Credit Rating

◮ Basel II/III: capital requirements of a bank are adapted to the individual
credit portfolio

◮ core terms: determine rating score and subsequently default
probabilities (PDs) as a function of some explanatory variables

◮ further terms: loss given default, portfolio dependence structure
◮ in practice: often classical logit/probit-type models to estimate linear

predictors (scores) and probabilities (PDs)
◮ statistically: 2-group classification problem

risk management issues
◮ credit risk is ony one part of a bank’s total risk:

; will be aggregated with other risks
◮ credit risk estimation from historical data:

; stress-tests to simulate future extreme situations
; need to easily adapt the rating system to possible future changes
; possible need to extrapolate to segments without observations
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(Simplified) Development of Rating Score and Default Probab ility

� raw data:

Xj measurements of several variables (“risk factors”)

� (nonlinear) transformation:

Xj → eXj = mj(Xj)

; handle outliers, allow for nonlinear dependence on raw risk factors

� rating score:
S = w1

eX1 + . . . + wd
eXd

� default probability:

PD = P(Y = 1|X ) = G(w1
eX1 + . . . + wd

eXd )

(where G is e.g. the logistic or gaussian cdf ; logit or probit)
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Aim of this Talk

case study on (cross-sectional) rating data
◮ compare different approaches to generalized additive models (GAM)
◮ consider models that allow for additional categorical variables

; partial linear terms (combination of GAM/GPLM)

� generalized additive models allow for a simultaneous fit of the
transformations from the raw data, the linear rating score and the default
probabilities
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Outline of the Study

� credit data case study: 4 credit datasets

regressors
dataset sample defaults continuous discrete categorical
German Credit 1000 30.00% 3 – 17
Australian Credit 678 55.90% 3 1 8
French Credit 8178 5.86% 5 3 15
UC2005 Credit 5058 23.92% 12 3 21

◮ differences between different approaches?
◮ improvement of default predictions?

� simulation study: comparison of additive model (AM) and GAM fits

◮ differences between different approaches?
◮ what if regressors are concurve? (nonlinear version of multicollinear)
◮ do sample size and default rate matter?
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Generalized Additive Model

� logit/probit are special cases of the generalized linear model (GLM)

E(Y |X ) = G
“

X⊤
β

”

� “classic” generalized additive model

E(Y |X ) = G

8

<

:

c +

p
X

j=1

mj(Xj)

9

=

;

mj nonparametric

� generalized additive partial linear model (semiparametric GAM)

E(Y |X 1, X 2) = G

8

<

:

c + X⊤

1 β +

p
X

j=1

mj(X2j)

9

=

;

mj nonparametric

linear part
◮ allows for known transformation functions
◮ allows to add / control for categorical regressors
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R “Standard” Tools
two main approaches for GAM in

◮ gam::gam ; backfitting with local scoring (Hastie and Tibshirani, 1990)

◮ mgcv::gam ; penalized regression splines (Wood, 2006)

; compare these procedures under the default settings of gam::gam and
mgcv::gam

competing estimators:
◮ logit binary GLM with G(u) = 1/{1 + exp(−u)} (logistic cdf as link)
◮ logit2 , logit3 binary GLM with 2nd / 3rd order polynomial terms for the

continuous regressors
◮ logitc binary GLM with continuous regressors categorized (4–5 levels)
◮ gam binary GAM using gam::gam with s() terms for continuous

regressors
◮ gamo binary GAM using gam::gam with s() terms for continuous

regressors, df parameter optimized w.r.t. to AIC
◮ mgcv binary GAM using mgcv::gam with s() terms for continuous

regressors

Marlene Müller:
A case study on using generalized additive models to fit credit rating scores 7



German Credit Data

� from http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit e.html

regressors
dataset name sample defaults continuous discrete categorical
German 1000 30.00% 3 – 17

� 3 continuous regressors: age, amount, duration (time to maturity)

� use 10 CV subsamples for validation

� stratified data (true default rate ≈ 5%)

� important findings:
◮ some observation(s) that seem to confuse mgcv::gam in one CV subsample

(→ see following slides)
◮ however, mgcv::gam seems to improve deviance and discriminatory power

w.r.t. gam::gam
◮ estimation times of mgcv::gam are between 4 to 7 times higher than for

gam::gam (not more than around a second, though)
◮ if we only use the continuous regressors: both GAM estimators are

comparable to logit cubic additive functions
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German Credit Data: Additive Functions
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How to Compare Binary GLM Fits?

� preferably by out-of-sample validation ; block cross-validation
approach: leave out subsamples of x% from the fitting procedure,
estimate from the remaining (100-x)% and calculate validation criteria
from the x% left-out

� two criteria for comparison: deviance (→ goodness of fit) and accuracy
ratios AR from CAP curves (→ discriminatory power)

� CAP curve (Lorenz curve) and the accuracy ratio AR:
◮ plot the empirical cdf of the fitted

scores against the empirical cdf of the
fitted default sample scores (precisely
1 − bF vs. 1 − bF (.|Y = 1))

◮ AR is the area between CAP curve
and diagonal in relation to the
corresponding area for the best
possible CAP curve (best possible ∼=
perfect separation)

◮ relation to ROC: compares
bF (.|Y = 0) and bF (.|Y = 1) and it
holds

AR = 2 AUC−1

PD

1−F(s)

best possible CAP curve

Percentage

100%

100%

1−F (s)
1

CAP curve

2

1_
G

Percentage of applicants

of defaults
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German Credit Data: Comparison
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Figure: Out of sample comparison (blockwise CV with 10 blocks) for various
estimators, accuracy ratios from CAP curves (upper panels), deviance values and
estimation times (lower panels)
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German Credit Data: Models with only Continuous Regressors
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Figure: Out of sample comparison (blockwise CV with 10 blocks) for various
estimators, accuracy ratios from CAP curves (upper panels), deviance values and
estimation times (lower panels)
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Australian Credit Data

� from http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)

� used for estimation:

regressors
dataset name sample defaults continuous discrete categorical
Australian 678 55.90% 3 1 8

� use only 7 CV subsamples for validation

� original A13 and A14 were dropped since actually multicollinear with A10, some
observations were dropped because of very few categories

� A10 was transformed to log(1 + A10), nevertheless used only as a linear
predictor (as half of the observations have the same value)

� important findings:

◮ essentially, the estimated additive function for A2 differs between mgcv::gam
and gam::gam

◮ gam::gam mostly outperforms than all other estimates (recall, that however
the number of CV subsamples is rather small!)

◮ estimation times of mgcv::gam are around 3 to 5 times higher than for
gam::gam (less than a second, though)
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French Credit Data

� data were already analyzed with GPLMs in Müller and Härdle (2003), here used
for estimation:

regressors
dataset name sample defaults continuous discrete categorical
French 8178 5.86% 5 3 15

� use the same preprocessing as in as in Müller and Härdle (2003)

� the original estimation + validation samples were merged, use 20 CV subsamples
for validation instead

� continuous variables are X1, X2, X3, X4 and X6, in particular X3, X4 and X6 are
known to have nonlinear form in a GAM

� important findings:
◮ it is confirmed that additive functions for X3, X4 and X6 should be modelled

by a nonlinear function be nonlinear
◮ again observation(s) ”confusing” mgcv::gam in one of the subsamples
◮ all estimates show similar discriminatory power, though with a slightly better

performance for both mgcv::gam and gam::gam
◮ estimation times of mgcv::gam are around 15 to 24 times higher than for

gam::gam (for the largest model: 20-40 sec. on a 3Ghz Intel CPU for the
subsamples of about 7800 observations)
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UC2005 Credit Data
� data from the 2005 UC data mining competitionwere already analyzed with

GPLMs in Müller and Härdle (2003), here used for estimation:

regressors
dataset name sample defaults continuous discrete categorical
UC2005 5058 23.92% 12 3 21

� the original estimation + validation + quiz samples were merged, use again 20 CV
subsamples for validation

� stratified data (true default rate ≈ 5%)
� several of the variables have been preprocessed with a log-transform or to binary
� in general, the data haven’t been very carefully analysed, it’s use is rather meant

a “proof-of concept”

� important findings:
◮ there are again observations ”confusing” mgcv::gam in one of the

subsamples
◮ performance of mgcv::gam and gam::gam w.r.t. is very similar and

outperforms the other approaches (closest to them is the logit fit with cubic
additive functions)

◮ estimation times of mgcv::gam are around 8 to 40 times higher than for
gam::gam (for the largest model: 5-8 min on a 3Ghz Intel CPU for up to 400
seconds for the subsamples of about 4800 observations)
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UC2005 Credit Data: Comparison
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Figure: Out of sample comparison (blockwise CV with 20 blocks) for various
estimators, accuracy ratios from CAP curves (upper panels), deviance values and
estimation times (lower panels)
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Conclusions

� typically, categorical regressors improve the fit significantly, therefore
estimation methods should adequately use these

� backfitting + local scoring (gam::gam) provides fast and numerically
stable results, default parameter (df=4) is a good first approach

� there is however clear indication, that penalized regression splines
(mgcv::gam) may provide more precise estimates of the additive
component functions; current drawbacks:

◮ estimation time (increasing with model complexity, categorical variables)
◮ mgcv::gam is slower than gam::gam with df=4, however much faster than

optimizing df in gam::gam
◮ effects to be seen rather in large samples
◮ in some few cases: numerical instability

� thus: no clear recommendation, no “ultimate method”
◮ gam::gam for a first & quick impression on the possible transformation
◮ mgcv::gam for higher precision (numerical instabilities might be possible

though)
; clearly topics for more research
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Australian Credit Data: Additive Functions

3.0 3.5 4.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

A2

s(
A

2,
1)

Variable A2 (mgcv and blue: gam, gamo)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
3

−
2

−
1

0
1

2
3

A3

s(
A

3,
4.

35
)

Variable A3 (mgcv and blue: gam, gamo)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
10

−
5

0
5

A7

s(
A

7,
6.

27
)

Variable A7 (mgcv and blue: gam, gamo)

Marlene Müller:
A case study on using generalized additive models to fit credit rating scores 20



Australian Credit Data: Comparison
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Figure: Out of sample comparison (blockwise CV with 7 blocks) for various estimators,
accuracy ratios from CAP curves (upper panels), deviance values and estimation times
(lower panels)
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Australian Credit Data: Models with only Continuous Regres sors
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Figure: Out of sample comparison (blockwise CV with 7 blocks) for various estimators,
accuracy ratios from CAP curves (upper panels), deviance values and estimation times
(lower panels)
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French Credit Data: Additive Functions
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French Credit Data: Comparison
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Figure: Out of sample comparison (blockwise CV with 20 blocks) for various
estimators, accuracy ratios from CAP curves (upper panels), deviance values and
estimation times (lower panels)
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French Credit Data: Models with only Significant Regressors
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Figure: Out of sample comparison (blockwise CV with 20 blocks) for various
estimators, accuracy ratios from CAP curves (upper panels), deviance values and
estimation times (lower panels)
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French Credit Data: Models with only Metric Regressors

logit1 logit2 logit3 logitc gam gamo mgcv

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

French−Metric: Accuracy Ratios (AR)

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

French−Metric: Accuracy Ratios (AR)

sample

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

gam vs. mgcv (AR)

sample

logit1 logit2 logit3 logitc gam gamo mgcv

16
0

17
0

18
0

19
0

20
0

French−Metric: Deviances

5 10 15 20

16
0

17
0

18
0

19
0

20
0

French−Metric: Deviances

sample

logit1 logit2 logit3 logitc gam gamo mgcv

0
10

0
20

0
30

0
40

0

French−Metric: Estimation Times

Figure: Out of sample comparison (blockwise CV with 20 blocks) for various
estimators, accuracy ratios from CAP curves (upper panels), deviance values and
estimation times (lower panels)
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UC2005 Credit Data: Additive Functions
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UC2005 Credit Data: Comparison
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Figure: Out of sample comparison (blockwise CV with 20 blocks) for various
estimators, accuracy ratios from CAP curves (upper panels), deviance values and
estimation times (lower panels)
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UC2005 Credit Data: Models with only Metric Regressors
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Figure: Out of sample comparison (blockwise CV with 20 blocks) for various
estimators, accuracy ratios from CAP curves (upper panels), deviance values and
estimation times (lower panels)
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