Analysis of Highdimensional Data by Semiparametric (Generalized) Regression Models

Marlene Müller

Michael G. Schimek

Medizinsche
Universität Graz

Aim of this Study

- discuss different approaches to additive models (AM) and generalized additive models (GAM)
- include categorical variables \Longrightarrow partial linear terms (combination of AM/PLM and GAM/GPLM)
- compare different approaches with respect to
- underlying model is adequate (additive structure)
- underlying model is non-adequate (non-additive structure)
- analysis of the computational effort of the techniques
- provide software \Rightarrow R package KernGPLM

Outline

- semiparametric extensions of the generalized linear model (GLM) \Rightarrow GPLM and GAM (generalized partial linear and additive models)
- introduce and compare different estimation approaches
- focus on techniques for high-dimensional data

Motivation

\Rightarrow Financial application: Credit Rating
estimation of individual credit scores, default probabilities
\Rightarrow Parametric and Semiparametric Estimation
logit/probit, nonparametric components, GPLM, GAM

Financial application: Credit Rating

- new interest in this field because of Basel II: capital requirements of a bank are adapted to the individual credit portfolio \rightarrow internal ratings-based approach (IRB approach)
- key problems: determine rating score and subsequently default probabilities (PDs) as a function of some explanatory variables
\rightarrow classical logit/probit-type models to estimate linear predictors (scores) and probabilities (PDs)
\rightarrow classification problem with 2 groups, but focus on regression models as rating scores need to be interpretable

From: The New Basel Capital Accord ("Basel II"):

(www.bis.org)

The bank must demonstrate that its criteria cover all factors that are relevant to the analysis of borrower risk. These factors should demonstrate an ability to differentiate risk, have predictive and discriminatory power, and be both plausible and intuitive in order to ensure that ratings are designed to distinguish risk rather than to minimise regulatory capital requirements.

This yields two objectives:

- study single factors
- find the best model

Data Example: sample of private loans

References: Fahrmeir/Hamerle (1984); Fahrmeir \& Tutz (1995)

- default indicator: $Y \in\{0,1\}$, where $1=$ default
- explanatory variables: personal characteristics, credit history, credit characteristics
- sample size: 1000 (stratified sample with 300 defaults)

Estimated (Logit) Scores

Score $=0.162-0.696^{\star \star *} \cdot$ previous $+0.496^{\star} \cdot(\mathrm{d} 9-12)+0.818^{\star \star *} \cdot(\mathrm{~d} 12-18)$

$$
+0.919^{\star \star \star} \cdot(\mathrm{d} 18-24)+1.502^{\star \star \star} \cdot(\mathrm{d}>24)-0.91^{\star * *} \cdot \text { savings }
$$

$$
-0.339^{\star} \text {. purpose }+0.976 \text {.foreign }+0.614^{\star \star \star} \text {. house }-0.000277^{\star \star} \text {.amount }
$$

$$
-0.0971^{\star \star} \cdot \text { age }+0.0000000185^{\star \star} \cdot \text { amount }^{2}+0.00086^{\star} \cdot \text { age }^{2}
$$

$$
+0.00000272 \cdot(\text { amount } \cdot \text { age })
$$

*, **, *** denote significant coefficients at the $10 \%, 5 \%, 1 \%$ level, respectively

Parametric and Semiparametric Estimation

－parametric score and PD estimation（logit／probit）
－semiparametric score and PD estimation
＊find relevant factors
＊possibly use transformations for each of the factors

Two objectives：
\Rightarrow search for effects of single factors
\Rightarrow search for best model

Data Example: binary choice model
estimate the model (credit rating: estimates scores + PDs)

$$
P(Y=1 \mid \boldsymbol{X})=E(Y \mid \boldsymbol{X})=G\left(\boldsymbol{\beta}^{\top} \boldsymbol{X}\right)
$$

$\Longrightarrow G$ is usually chosen as a cumulative distribution function

Parametric Models

- logit

$$
P(Y=1 \mid \boldsymbol{X})=F\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}\right), \quad F(\bullet)=\frac{1}{1+e^{-\bullet}}
$$

- probit

$$
P(Y=1 \mid \boldsymbol{X})=\Phi\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}\right), \quad \Phi(\bullet) \text { standard normal cdf }
$$

Data Example: logit (with interaction)

credit default on AGE and AMOUNT using quadratic and interaction terms, left: surface and right: contours of the fitted score function

Semiparametric Models

- local regression

$$
E(Y \mid \boldsymbol{T})=G\{m(\boldsymbol{T})\}, \quad m \text { nonparametric }
$$

- generalized partial linear model (GPLM)

$$
E(Y \mid \boldsymbol{X}, \boldsymbol{T})=G\left\{\boldsymbol{X}^{\top} \boldsymbol{\beta}+m(\boldsymbol{T})\right\} \quad m \text { nonparametric }
$$

- generalized additive partial linear model (semiparametric GAM)

$$
E(Y \mid \boldsymbol{X}, \boldsymbol{T})=G\left\{\beta_{0}+\boldsymbol{X}^{\top} \boldsymbol{\beta}+\sum_{j=1}^{p} m_{j}\left(T_{j}\right)\right\} \quad m_{j} \text { nonparametric }
$$

Some references:
Loader (1999), Hastie and Tibshirani (1990), Härdle et al. (2004), Green and Silverman (1994)

Data Example: generalized partial linear model (GPLM)

credit default on AGE and AMOUNT using a nonparametric function, left: surface and right: contours of the fitted score function on AGE and AMOUNT

Objectives

- obtain shape information: knowlegde about functional dependencies
- select the "optimal" set of predictors: estimate scores and PDs
\Longrightarrow can be obtained by backfitting and local scoring
additional aspect (recall the Basel II document)
- estimation of marginal effects: identify relevant factors
\Longrightarrow can be obtained by marginal integration

Note: the marginal effect represents the conditional expectation $E_{\varepsilon, T_{\underline{\alpha}}}\left(Y \mid T_{\alpha}\right)$ where the expectation is not only taken on the error distribution but also on all other regressors

Estimation Approaches

- GPLM:
* generalization of Speckman's estimator (type of profile likelihood)
\star backfitting for two additive components and local scoring
References:
(PLM) Speckman (1988), Robinson (1988); (PLM/splines) Schimek (2000), Eubank et al. (1998), Schimek (2002); (GPLM) Severini and Staniswalis (1994), Müller (2001)
- semiparametric GAM:
* [modified|smooth] backfitting and local scoring
* marginal [internalized] integration

References:
(marginal integraton) Tjøstheim and Auestad (1994), Chen et al. (1996),
Hengartner et al. (1999), Hengartner and Sperlich (2005);
(backfitting) Buja et al. (1989), Mammen et al. (1999), Nielsen and Sperlich (2005)

Estimation of the GPLM

$$
E(Y \mid \boldsymbol{X}, \boldsymbol{T})=G\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}+m(\boldsymbol{T})\right)
$$

- $\widehat{\beta}$ can be estimated if m known (parametric method, weighted LSE),
- \hat{m} can be estimated if β known (nonparametric method, e.g. Nadaraya-Watson type)

References:
Severini \& Staniswalis (1994), Müller (2001)

Speckman estimator (for PLM)

$$
\begin{aligned}
Y & =\boldsymbol{\beta}^{T} \boldsymbol{X}+m(\boldsymbol{T})+\varepsilon \\
E(Y \mid \boldsymbol{T}) & =\boldsymbol{\beta}^{T} E(\boldsymbol{X} \mid \boldsymbol{T})+m(\boldsymbol{T})+E(\varepsilon \mid \boldsymbol{T}) \\
\underbrace{Y-E(Y \mid \boldsymbol{T})}_{\widetilde{Y}} & =\boldsymbol{\beta}^{T} \underbrace{\{\boldsymbol{X}-E(\boldsymbol{X} \mid \boldsymbol{T})\}}_{\widetilde{\boldsymbol{X}}}+\underbrace{\varepsilon-E(\varepsilon \mid \boldsymbol{T})}_{\widetilde{\varepsilon}}
\end{aligned}
$$

matrix notation

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}= & \left(\widetilde{\mathcal{X}}^{T} \tilde{\mathcal{X}}\right)^{-1} \widetilde{\mathcal{X}}^{T} \tilde{\boldsymbol{Y}} \\
& \widetilde{\mathcal{X}}=(\mathbf{I}-\mathbf{S}) \mathcal{X}, \quad \widetilde{\boldsymbol{Y}}=(\mathbf{I}-\mathbf{S}) \boldsymbol{Y} \\
& \mathcal{X} \text { design matrix, S smoother matrix, I identity matrix } \\
\widehat{\boldsymbol{m}}= & \mathbf{S}(\boldsymbol{Y}-\mathcal{X} \widehat{\boldsymbol{\beta}})
\end{aligned}
$$

Reference: Speckman (1988)

Generalized Speckman Estimator

- partial linear model (identity G)

$$
\begin{aligned}
E(Y \mid \boldsymbol{X}, \boldsymbol{T}) & =\boldsymbol{X}^{T} \boldsymbol{\beta}+m(\boldsymbol{T}) \\
\Longrightarrow \quad \boldsymbol{m}^{n e w} & =\mathbf{S}(\boldsymbol{Y}-\mathcal{X} \boldsymbol{\beta}) \\
\boldsymbol{\beta}^{\text {new }} & =\left(\widetilde{\mathcal{X}}^{T} \widetilde{\mathcal{X}}\right)^{-1} \widetilde{\mathcal{X}}^{T} \tilde{\boldsymbol{Y}}
\end{aligned}
$$

- generalized partial linear model

$$
E(Y \mid \boldsymbol{X}, \boldsymbol{T})=G\left\{\boldsymbol{X}^{T} \boldsymbol{\beta}+m(\boldsymbol{T})\right\}
$$

$\Longrightarrow \quad$ above for adjusted dependent variable

$$
Z=\mathcal{X} \boldsymbol{\beta}+\boldsymbol{m}-\mathcal{W}^{-1} \boldsymbol{v}
$$

$$
\boldsymbol{v}=\left(\ell_{i}^{\prime}\right), \mathcal{W}=\operatorname{diag}\left(\ell_{i}^{\prime \prime}\right)
$$

References: Severini and Staniswalis (1994)

Comparison of Algorithms

	parametric step	nonparametric step	est. matrix
Speckman	$\boldsymbol{\beta}^{\text {new }}=\left(\widetilde{\mathcal{X}}^{T} \mathcal{W} \widetilde{\mathcal{X}}\right)^{-1} \widetilde{\mathcal{X}}^{T} \mathcal{W} \widetilde{\boldsymbol{Z}}$	$m^{\text {new }}=\mathbf{S}(\boldsymbol{Z}-\mathcal{X} \boldsymbol{\beta})$	$\eta=\mathcal{R}^{S} \boldsymbol{Z}$
Backfitting	$\boldsymbol{\beta}^{\text {new }}=\left(\mathcal{X}^{T} \mathcal{W} \widetilde{\mathcal{X}}\right)^{-1} \mathcal{X}^{T} \mathcal{W} \widetilde{\boldsymbol{Z}}$	$m^{\text {new }}=\mathbf{S}(\boldsymbol{Z}-\mathcal{X} \boldsymbol{\beta})$	$\eta=\mathcal{R}^{B} \boldsymbol{Z}$
Profile	$\boldsymbol{\beta}^{\text {new }}=\left(\mathcal{X}^{T} \mathcal{W} \widetilde{\mathcal{X}}\right)^{-1} \mathcal{X}^{T} \mathcal{W} \widetilde{\boldsymbol{Z}}$	$m^{\text {new }}=\ldots$	$\eta=\mathcal{R}^{P} \boldsymbol{Z}$

Speckman/Backfitting:
$\widetilde{\mathcal{X}}=(\mathbf{I}-\mathbf{S}) \mathcal{X}, \widetilde{\boldsymbol{Z}}=(\mathbf{I}-\mathbf{S}) \boldsymbol{Z}, \mathbf{S}$ weighted smoother matrix
Profile Likelihood:
$\tilde{\mathcal{X}}=\left(\mathbf{I}-\mathbf{S}^{P}\right) \mathcal{X}, \widetilde{\boldsymbol{Z}}=\left(\mathbf{I}-\mathbf{S}^{P}\right) \boldsymbol{Z}, \mathbf{S}^{P}$ weighted (different) smoother matrix

References: Severini and Staniswalis (1994), Müller (2001)

Data Example:

French Credit Data

- response variable Y
(credit status, $0=$ "Non-Default", $1=$ "Default")
- metric variables X2 to X9
- categorical variables X10 to X24

	Estimation data set		Validation data set	
0 ("Non-Defaults")	5808	(94%)	1891	(94.6%)
1 ("Defaults")	372	(6%)	107	(5.4%)
total	6180	1998		

Lorenz performance curves, density estimates (conditional on Y, red=default) for $\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 7$.

GPLM/GAM Application

- to include variable X5 in a nonlinear way:

$$
P\left(Y=1 \mid X_{-5}, X_{5}\right)=F\left(\sum_{j \neq 5} \beta_{j}^{\top} X_{j}+m_{5}\left(X_{5}\right)\right)
$$

- to include variables X4, X5 in a nonlinear way:

$$
P\left(Y=1 \mid X_{-4,-5},\left(X_{4}, X_{5}\right)\right)=F\left(\sum_{j \neq 4,5} \beta_{j}^{\top} X_{j}+m_{45}\left(X_{4}, X_{5}\right)\right)
$$

	Logit	nonparametric in						
		X2	X3	X4	X5	X7	X4,X5	$\begin{array}{r} \mathrm{X} 2, \\ \mathrm{X} 4, \mathrm{X} 5 \end{array}$
constant	-2.605	-	-	-	-	-	-	-
X2	0.247	-	0.243	0.241	0.243	0.233	0.228	-
X3	-0.417	-0.414	-	-0.414	-0.416	-0.417	-0.408	-0.399
X4	-0.062	-0.052	-0.063	-	-0.065	-0.054	-	-
X5	-0.038	-0.051	-0.045	-0.034	-	-0.042	-	-
X6	0.188	0.223	0.193	0.190	0.177	0.187	0.176	0.188
X7	-0.138	-0.138	-0.142	-0.131	-0.146	-	-0.135	-0.128
X8	-0.790	-0.777	-0.800	-0.786	-0.796	-0.793	-0.792	-0.796
X9	-1.215	-1.228	-1.213	-1.222	-1.216	-1.227	-1.214	-1.215

Parametric coefficients for X2 to X9. Bold values are significant at 5\%.

Marginal dependencies, variables $\mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4+\mathrm{X} 5, \mathrm{X} 4, \mathrm{X} 5$ and X 5 . Parametric logit fits (red) and GPLM logit fits (green).

Estimation of the GAM

$$
E(Y \mid \boldsymbol{X}, \boldsymbol{T})=G\left\{\beta_{0}+\boldsymbol{X}^{\top} \boldsymbol{\beta}+\sum_{j=1}^{p} m_{j}\left(T_{j}\right)\right\} \quad m_{j} \text { nonparametric }
$$

- classical backfitting: fit single components by regression on the residuals w.r.t. the other components
- modified backfitting: first project on the linear space spanned by all regressors and then nonparametrically fit the partial residuals
- marginal (internalized) integration: estimate the marginal effect by integrating a full dimensional nonparametric regression estimate \Longrightarrow original proposal is computationally intractable: $O\left(n^{3}\right)$
\Longrightarrow choice of nonparametric estimate is essential: marginal internalized integration

Comparison of Algorithms [State of the Art (?)]

- consistency of marginal integration:

Hengartner et al. (1999); Hengartner and Sperlich (2005)
\Rightarrow shows that marginal (internalized) integration works, no comparison with backfitting

- optimal rate of convergence for marginal integration:

Hengartner et al. (1999)
\Rightarrow marginal (internalized) integration + one backfitting step yields an oracle efficient estimator for additive components

- comparison of backfitting and marginal integration: Sperlich et al. (1999); Martins-Filho and Yang (2004)
\Rightarrow additive components functions are generally more precisely fitted with backfitting, in particular due to boundary effects
\Longrightarrow all authors use their own implementation, no generally and publicly available code

Marginal (Internalized) Integration

marginal effect of regressor T_{j}

$$
r_{j}\left(T_{j}\right)=E_{\boldsymbol{T}_{-j}}\{m(\boldsymbol{T})\}
$$

if m is truly additive, i.e. $m(\boldsymbol{T})=c+m_{1}\left(T_{1}\right)+\ldots+m_{p}\left(T_{p}\right)$, then

$$
r_{j}\left(T_{j}\right)=c+m_{j}\left(T_{j}\right)
$$

Hengartner et al. (1999); Hengartner and Sperlich (2005) propose to use instruments (m_{-j} denoting $\sum_{\alpha \neq j} m_{\alpha}$)

$$
E\left(\xi_{j} \mid T_{j}=t_{j}\right)=1 \quad \text { and } \quad E\left\{m_{-j}\left(\boldsymbol{T}_{-j}\right) \cdot \xi_{j} \mid T_{j}=t_{j}\right\}=0
$$

$$
E\left(Y \xi_{j} \mid T_{j}=t_{j}\right)=r_{j}\left(t_{j}\right)=c+m_{j}\left(t_{j}\right)
$$

Marginal (Internalized) Integration:

$$
E\left(Y \xi_{j} \mid T_{j}=t_{j}\right)=r_{j}\left(t_{j}\right)=c+m_{j}\left(t_{j}\right)
$$

- estimate additive component function by regression of $Y \widehat{\xi}_{j}$ on T_{j}
- no iteration required! (but additional estimate of the instrument ξ_{j})
- numerous smoothing parameters have to be chosen: for the instruments, for the regression
- estimator can be seen as an internalized version of the original marginal integration estimator by Tjøstheim and Auestad (1994), Chen et al. (1996)

Estimation of Instruments

$$
\xi_{j}=\frac{f_{j}\left(T_{j}\right) f_{-j}\left(\boldsymbol{T}_{-j}\right)}{f(\boldsymbol{T})}=\frac{f_{j}\left(T_{j}\right)}{f\left(T_{j} \mid \boldsymbol{T}_{-j}\right)}
$$

f_{j}, f_{-j} and f denoting the pdfs of T_{j}, T_{-j} and T, respectively

$$
\widehat{r}_{j}\left(t_{j}\right)=\frac{1}{n} \sum_{i=1}^{n} K_{h_{j}}\left(t_{j}-T_{i j}\right) \underbrace{\frac{1}{\widehat{f\left(T_{i j} \mid \boldsymbol{T}_{i,-j}\right)}}}_{\text {to estimate! }} Y_{i}=\mathbf{S}_{j}\left(\widehat{\xi}_{i j} Y_{i}\right)
$$

\mathbf{S}_{j} denoting a univariate smoother here

Estimation of Instruments (cont'd)
we need an estimate for

$$
\widehat{f}\left(T_{j} \mid \boldsymbol{T}_{-j}\right)
$$

\Longrightarrow How to solve this?

- by nonparametric KDE ("classical" marginal integration)
\rightarrow not feasible in large dimensions!
- under normality assumption
\rightarrow restrictive!
- normality \approx "linear regression" of T_{j} on T_{-j}
estimate 1: estimate pdf of T_{j} given linear regression of T_{j} on T_{-j} estimate 2: estimate pdf of T_{j} given additive regression of T_{j} on T_{-j}
\rightarrow means to use dimension reduction techniques here

Extension to Partial Linear and Generalized Cases

important: avoid any multi-dimensional smoothing!

- two-step approach for PLM (with additive components)
- estimate additive components by a Speckman-type approach

$$
\begin{aligned}
\widetilde{\boldsymbol{\beta}}_{j} & =\left\{\mathcal{X}^{\top}\left(\mathbf{I}-\mathbf{S}_{j}\right)^{\top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \mathcal{X}\right\}^{-1} \mathcal{X}^{\top}\left(\mathbf{I}-\mathbf{S}_{j}\right)^{\top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \widehat{\boldsymbol{\xi}}_{j} \boldsymbol{Y} \\
& =\left(\widetilde{\mathcal{X}}_{j}^{\top} \widetilde{\mathcal{X}}_{j}\right)^{-1} \widetilde{\mathcal{X}}_{j}^{\top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \widehat{\boldsymbol{\xi}}_{j} \boldsymbol{Y} \quad \text { where } \quad \widetilde{\mathcal{X}}_{j}=\left(\mathbf{I}-\mathbf{S}_{j}\right) \mathcal{X} \\
\widehat{\boldsymbol{r}}_{j} & =\mathbf{S}_{j}\left(\widehat{\boldsymbol{\xi}}_{j} \boldsymbol{Y}-\mathcal{X} \widetilde{\boldsymbol{\beta}}_{j}\right) \\
\widehat{\boldsymbol{m}}_{j} & =\widehat{\boldsymbol{r}}_{j}-\widehat{\boldsymbol{r}}_{j}
\end{aligned}
$$

- fit the linear part by a regression on the residuals w.r.t. the additive part
- similar two-step approach for GPLM (with additive components) by applying the above on the adjusted dependent variable

Simulation Example: true underlying regression is additive nonparametric part:

$$
m(\boldsymbol{T})=\underbrace{\cos \left(T_{1}\right)-E \cos \left(T_{1}\right)}_{m_{1}\left(T_{1}\right)}+\underbrace{\cos \left(T_{2}\right)-E \cos \left(T_{2}\right)}_{m_{2}\left(T_{2}\right)}
$$

where

$$
T_{1} \sim N(0,1), \quad T_{2}=0.8\left(T_{1}^{2}-1\right)+0.2 U, U \sim N(0,1)
$$

(quadratic dependence of the regressors!)
sample size: $n=2000$
\rightarrow marginal integration?
\rightarrow marginal integration with one additional backfitting step?
\rightarrow marginal integration to initialize backfitting (replacing the usual zero-functions)

Backfit / Component 1

Margint / Component 1

Backfit / Component 2

Margint / Component 2

- B - classical
- B - modified
Marginal integration - one subsequent backfitting

Simulation Example: true underlying regression is non-additive nonparametric part:

$$
m(\boldsymbol{T})=\cos \left\{\alpha T_{1}+(1-\alpha) T_{2}\right\}, \quad \alpha=0.4
$$

where

$$
T_{1}, T_{2} \sim N(0,1), \operatorname{cov}\left(T_{1}, T_{2}\right)=0.8
$$

(linear correlation of the regressors)
\Longrightarrow marginal effects:
$\widetilde{m}_{1}\left(T_{1}\right)=e^{-(1-\alpha)^{2} / 2}\left\{\cos \left(\alpha T_{1}\right)-e^{-\alpha^{2} / 2}\right\}, \quad \widetilde{m}_{2}\left(T_{2}\right)=e^{-\alpha^{2} / 2}\left[\cos \left\{(1-\alpha) T_{1}\right\}-e^{-(1-\alpha)^{2} / 2}\right]$
sample size: $n=2000$
\rightarrow marginal integration estimates marginal effects?

Comparison of Algorithms [Recent Findings]

- consistency of marginal integration:
\Rightarrow if underlying function is truly additive, backfitting outperforms marginal integration
\Rightarrow consider marginal integration to initialize backfitting (replacing the usual zero-functions)
- comparison of backfitting and marginal integration:
\Rightarrow marginal integration indeed estimates marginal effects, but large number of observations is needed
\Rightarrow estimation method of the instruments is essential, dimension reduction techniques are required
\Longrightarrow R package KernGPLM for application

Summary

- GPLM and semiparametric GAM are natural extensions of the GLM
- different techniques to estimate these models are particularly useful because of:
* shape informations to obtain transformations
* marginal effects to identify relevant factors
- large amount of data is needed for estimating marginal effects

Work in Progress:

\Rightarrow R package KernGPLM with routines for
\star (kernel based) generalized partial linear and additive models

* additive components [modified|smooth] backfitting and local scoring
\star additive components through marginal [internalized] integration

References

Buja, A., Hastie, T., and Tibshirani, R. (1989). Linear smoothers and additive models (with discussion). Annals of Statistics, 17:453-555.

Chen, R., Härdle, W., Linton, O., and Severance-Lossin, E. (1996). Estimation and variable selection in additive nonparametric regression models. In Härdle, W. and Schimek, M., editors, Proceedings of the COMPSTAT Satellite Meeting Semmering 1994, Heidelberg. Physica Verlag.

Eubank, R. L., Kambour, E. L., Kim, J. T., Klipple, K., Reese, C. S., and Schimek, M. G. (1998). Estimation in partially linear models. Computational Statistics \& Data Analysis, 29:27-34.

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models, volume 58 of Monographs on Statistics and Applied Probability. Chapman and Hall, London.

Härdle, W., Müller, M., Sperlich, S., and Werwatz, A. (2004). Nonparametric and Semiparametric Modeling: An Introduction. Springer, New York.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, volume 43 of Monographs on Statistics and Applied Probability. Chapman and Hall, London.

Hengartner, N., Kim, W., and Linton, O. (1999). A computationally efficient oracle estimator for additive nonparametric regression with bootstrap confidence intervals. Journal of Computational and Graphical Statistics, 8:1-20.

Hengartner, N. and Sperlich, S. (2005). Rate-optimal estimation with the integration method in the presence of many covariates. Journal of Multivariate Analysis, 95:246-272.

Loader, C. (1999). Local Regression and Likelihood. Springer, New York.

Mammen, E., Linton, O., and Nielsen, J. P. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Annals of Statistics, 27:1443-1490.

Martins-Filho, C. and Yang, K. (2004). Finite sample performance of backfitting, marginal integration and two stage estimators under common bandwidth selection criterion.
http://oregonstate.edu/~martinsc/martins-filho-yang(04)_v3.pdf.
Müller, M. (2001). Estimation and testing in generalized partial linear models - a comparative study. Statistics and Computing, 11:299-309.

Nielsen, J. and Sperlich, S. (2005). Smooth backfitting in practice. Journal of the Royal Statistical Society, Series B, 67:43-61.

Robinson, P. M. (1988). Root n-consistent semiparametric regression. Econometrica, 56:931-954.
Schimek, M. G. (2000). Estimation and inference in partially linear models with smoothing splines. Journal of Statistical Planning and Inference, 91:525-540.

Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood estimation in semiparametric models. Journal of the American Statistical Association, 89:501-511.

Speckman, P. E. (1988). Regression analysis for partially linear models. Journal of the Royal Statistical Society, Series B, 50:413-436.

Sperlich, S., Linton, O., and Härdle, W. (1999). Integration and backfitting methods in additive models: Finite sample properties and comparison. Test, 8:419-458.

Tjøstheim, D. and Auestad, B. (1994). Nonparametric identification of nonlinear time series: Projections. Journal of the American Statistical Association, 89:1398-1409.

